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Abstract

We consider the convex-concave fractional minimization problem with an arbitrary feasible
set. It has been shown that the problem can be treated as a quasiconvex minimization
problem. For the case of convex feasible set, we reduce the original problem to pseudoconvex
minimization problem showing that a local solution is global. We also show that a gradient
method can be applied to this problem. Computational experiments have been done on
some test problems.

1. Introduction

In this paper we consider the fractional programming problem:

max
x∈D

f(x)

g(x)
, (1.1)

where D ⊂ Rn is a subset, and f(x) is convex, g(x) is concave on D, f(x) and g(x)
positive on D. We call this problem as the convex-concave fractional minimization
problem. Problem (1.1) has many applications in economics and engineering. For
instance, problems such as minimization of average cost function [4] and minimizing
the ratio between the amount of resource wasted and used on the production plan
belong to a class of fractional programming.
The most well-known and studied class of fractional programming is the linear frac-
tional programming class. When D is convex then well known existing methods
for solving problem (1.1) are variable transformation [8], nonlinear programming
approach [7], and parametric approach [5]. The variable transformation method
reduces problem (1.1) to convex programming for the case

D = {x ∈ S ⊂ Rn | h(x) ≤ 0}
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with h : Rn → Rm a convex vector-valued function and S a convex set.

Theorem 1.1 [7] Problem (1.1) can be reduced to convex programming

min{tf(t−1y) | th(t−1y) ≤ 0, tg(t−1y), t−1y ∈ S, t > 0} (1.2)

applying the transformation

y = xt and t =
1

g(x)
.

Moveover, if (y∗, t∗) solves problem (1.2) then x∗ = t−1y∗ solves (1.1)
One of the most popular strategies for fractional programming is the parametric
approach which considers the class of optimization problems associated with problem
(1.1) given by

inf
x∈D

{f(x)− λg(x)} (1.3)

with λ ∈ R.
Introduce the function F (λ) as follows

F (λ) = min
x∈D

{f(x)− λg(x)}.

Lemma 1.1 [5] If D is a compact set then

(a) The function F : R→ R is concave, continuous and strictly increasing.

(b) The optimal solution λ∗ to (1.1) is finite and F (λ∗) = 0.

(c) F (λ) = 0 implies that λ = λ∗.

(d) λ∗ =
f(x∗)

g(x∗)
= min

x∈D

f(x)

g(x)
.

2. Global optimality conditions

Consider the convex-concave fractional minimization problem

min
x∈D

φ(x) (2.1)

where, φ(x) =
f(x)

g(x)
, D ⊂ Rn is an arbitrary compact set, f, g : Rn → D are differ-

entiable functions, f(x) is convex, g(x) is concave on D, f and g are positive on D.
Problem (2.1) belongs to a class of global optimization problems. Classical optimal-
ity conditions for problem (2.1) can not always guarantee finding global solutions.
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In order to formulate global optimality conditions for (2.1), we need to introduce
the set:

L(φ,C) = {x ∈ D | φ(x) ≤ C}.

Clearly, L(φ,C) is convex for all C > 0.

Definition 2.1 A function h : D → R is said to be quasiconvex on a convex
set D ⊂ Rn if

h(αx+ (1− α)y) ≤ max{h(x), h(y)}

holds for all x, y ∈ D and α ∈ [0, 1].

Lemma 2.1 [1] The function h(x) is quasiconvex on D if and only if the set
L(h,C) is convex for all C.
Then it is obvious that φ(x) is quasiconvex on D. Thus problem (2.1) reduces to
quasiconvex minimization problem. Now we can apply the global optimality condi-
tions [2] for problem (2.1)

Theorem 2.1 [1] Let z be a solution to problem (2.1), and let

EC(φ) = {y ∈ Rn | φ(y) = C}.

Then
⟨φ′(x), x− y⟩ ≥ 0 for all y ∈ Eφ(z)(φ) and x ∈ D. (2.2)

If, in addition
lim

||x||→∞
φ(x) = +∞ and φ′(x+ αφ′(x)) ̸= 0

holds for all x ∈ D and α ≥ 0, then condition (2.2) becomes sufficient.
The optimality condition (2.2) can be written as follows:

n∑
i=1

{
∂f(x)

∂xi
g(x)− ∂g(x)

∂xi
f(x)

}(
xi − yi
g2(x)

)
≥ 0

for all y ∈ Eφ(z)(φ) and x ∈ D.

Lemma 2.2 If there exists a pair (u, y) ∈ D × Eφ(z)(φ) such that

⟨φ′(u), u− y⟩ < 0
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then φ(u) < φ(z).
Proof. On the contrary, assume that φ(u) > φ(y) = φ(z). Since φ is quasiconvex,
we have

φ(αy + (1− α)u) ≤ max{φ(u), φ(y)} = φ(u).

By Taylor’s formula, there is a neighborhood of the point u which

φ(u+ α(y − u))− φ(y) = α

[
⟨φ′(u), y − u⟩+ o(α||y − u||)

α

]
≤ 0,

α > 0. Taking into account that

o(α||y − u||)
α

α→0
−−→ 0,

we obtain ⟨φ′(u), y−u⟩ ≤ 0 or ⟨φ′(u), u−y⟩ ≥ 0 which contradicts ⟨φ′(u), u−y⟩ < 0.
This completes the proof.

Definition 2.1 Let Q be a subset of Rn. A differentiable function h : Q → R
is pseudoconvex at y ∈ Q if

h(x)− h(y) < 0 which implies h′(y)(x− y) < 0, ∀x ∈ Q.

A function h(.) is pseudoconvex on Q if it is pseudoconvex at each point y ∈ Q.

Lemma 2.3 Let D be a convex set in Rn. Let f : D → R be convex, differ-
entiable and positive; Let g : D → R be concave, differentiable and positive. Then

the function φ(x) =
f(x)

g(x)
is pseudoconvex.

Proof. Take any point y ∈ D. Introduce the function ψ : D → R as follows:

ψ(x) = f(x)g(y)− g(x)f(y).

Since g(y) > 0 and f(y) > 0, ψ(x) is convex and differentiable. Clearly, ψ(y) = 0.
It is obvious that

φ(y) > φ(x) which is equivalent to ψ(y) > ψ(x).

Since ψ(.) is convex and differentiable, then we have

0 > ψ(x)− ψ(y) ≥ ⟨ψ′(y), x− y⟩.

Taking into account that

⟨ψ′(y), x− y⟩
[g′(y)]2

=
⟨f ′(y)g(y)− g′(y)f ′(y), x− y⟩

[g′(y)]2
= ⟨φ′(y), x− y⟩
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we obtain implications

φ(y) > φ(x), hence we have ⟨φ′(y), x− y⟩ < 0

which prove the assertion.

Lemma 2.4 Let D be a convex set. Then any local minimizer x∗ of φ(x) on D
is also a global minimizer.
Proof. On the contrary, assume that x∗ is not a global minimizer. Then there
exists a point u ∈ D such that

φ(x∗) > φ(u). (2.2)

Since D is a convex set,

x∗ + α(u− x∗) = αu+ (1− α)x∗ ∈ D, ∀α : 0 < α < 1.

By Taylor’s expansion, we have

φ(x∗ + α(u− x∗)) = φ(x∗) + α⟨φ′(x∗), u− x∗⟩+ o(α||u− x∗||),

where lim
α→0+

o(α||u− x∗||
α

= 0. Since x∗ is a local minimizer of φ(.) on D, there exists

0 < α∗ < 1 so that

φ(x∗ + α(u− x∗))− φ(x∗) > 0, ∀α : 0 < α < α∗,

which implies
⟨φ′(x∗), u− x∗⟩ > 0.

Since φ(.) is pseudoconvex, ⟨φ′(x∗), u − x∗⟩ > 0 implies that φ(u) > φ(x∗) contra-
dicting (2.2) φ(x∗) > φ(u). This completes the proof.
Lemma 2.4 allows us to apply gradient methods for solving problem (2.1).

3. Numerical methods and results

Consider problem (2.1) for the quadratic case:

min
x∈D

{
f(x)

g(x)
=

⟨Ax, x⟩+ ⟨b, x⟩
⟨Cx, x⟩+ ⟨d, x⟩+ e

}
whereD = {x ∈ Rn | Bx ≤ l} is compact, A and C are matrices such that An×n > 0,
Cn×n < 0, f(x) > 0 and g(x) > 0 on D.
The algorithm of conditional gradient method is the following.
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Algorithm

Step1. Choose an arbitrary feasible point x0 ∈ D and set k := 0.
Step2. Solve the linear programming

⟨φ′(xk), x̄k⟩ = min
x∈D

⟨φ′(xk), x̄⟩.

Let x̄k be a solution to the above problem.
Step3. Compute ηk :

ηk = ⟨φ′(xk), x̄k − xk⟩.

Step4. If ηk = 0 then xk is a solution.
Step5. xk+1 = xk(αk), x

k(α) = xk + α(x̄k − xk), α ∈ [0, 1],

f(xk(αk)) = min
α∈[0,1]

f(xk(α))

Step6. Set k := k + 1 and go to Step2.

Theorem 3.1 [3] The sequence {xk, k = 0, 1, . . .} generated by Algorithm is
a minimizing sequence, i.e,

lim
k→∞

φ(xk) = min
x∈D

φ(x).

The following problems have been solved numerically on MATLAB based on Algo-
rithm.
Consider problem (2.1) with the following matrices.
Problem 1.

A =

(
1 2
−1 3

)
, C =

(
−2 1
−1 −4

)
, b =

(
2
1

)
d =

(
1
5

)
.

Subject to constraint: D = {−1 ≤ x1 ≤ 3, − 2 ≤ x2 ≤ 4}.
Solution: x∗ = (0.3712; 0.5282). Global value: f(x∗) = 2.0092.

Problem 2.

A =

 1 −2 −1
−1 3 0
4 1 2

 , C =

 2 1 3
0 2 1

−1 1 −1

 , b =

 3
2
4

 , d =

 2
1
1

 .

Subject to constraint: D1 = {1 ≤ x1 ≤ 3, 2 ≤ x2 ≤ 5, 1 ≤ x3 ≤ 4}.
Solution: x∗ = (1, 2, 1). Global value: f(x∗) = 0.6747.

The feasible set is D2 = {−1 ≤ x1 ≤ 3,−2 ≤ x2 ≤ 4,−1 ≤ x3 ≤ 5}.
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Solution: x∗ = (−0.4709,−0.3723,−0.5008), Global value: f(x∗) = 0.6662.
Problem 3.

A =


1 1 1 1
1 2 1 1
1 1 3 1
1 1 1 4

 , C =


−2 1 1 2
1 −1 −1 −2
1 −1 −3 1
2 −2 1 −9

 , b =


2

−2
3

−4

 , d =


1

−2
3

−1

 .

The feasible set is D = {−2 ≤ x1 ≤ 2,−1 ≤ x2 ≤ 4,−1 ≤ x3 ≤ 5,−3 ≤ x4 ≤ 1}.
Solution: x∗ = (−0.2658, 0.1253,−0.1331, 0.1330).
Global value: f(x∗) = 0.6665.

Problem 4.

A =


1 1 1 1 1
1 2 1 1 1
1 1 3 1 1
1 1 1 4 1
1 1 1 1 5

 , C =


−2 1 1 2 1
1 −1 −1 −2 −1
1 −1 −3 1 1
2 −2 1 −9 −2
1 −1 1 −6 −4

 ,

b = (1,−8,−3, 2, 5)′, d = (−2, 2, 5,−6, 4)′

The feasible set is D = {−3 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 3,−1 ≤ x3 ≤ 5,−1 ≤ x4 ≤
4,−4 ≤ x5 ≤ 1},

Solution: x∗ = (−0.9832, 2.9790,−0.2103,−0.9033,−0.3180).
Global value: f(x∗) = 0, 6608.

Problem 5.

A =



1 1 1 1 1 1
1 2 1 1 1 1
1 1 3 1 1 1
1 1 1 4 1 1
1 1 1 1 5 1
1 1 1 1 1 6

 , C =



−1 1 0 0 1 −1
1 −2 1 1 0 1
0 1 −3 0 1 0
0 1 0 −3 0 1
1 0 1 0 −2 1

−1 1 0 1 1 −1

 ,

b = (1,−1, 2, 2, 3,−3)′, d = (3,−1, 1,−1, 2, 4)′

D =


−4 ≤ x1 ≤ 1, −2 ≤ x2 ≤ 5
−1 ≤ x3 ≤ 3, −3 ≤ x4 ≤ 2
−2 ≤ x5 ≤ 4, −5 ≤ x6 ≤ 2


Solution: x∗ = (−4.0, 0.2709, 0.2555, 0.6716,−0.1537, 1.3453).

Global value: f(x∗) = 0, 6641.

Conclusion



Mongolian Mathematical Journal 10

We considered the convex-concave fractional minimization problem with an arbi-
trary feasible set. When the feasible set was nonconvex, we formulated the global
optimality conditions. For the case of convex feasible set, we showed that the prob-
lem can be reduced to pseudoconvex minimization problem. We have also shown
that classical gradient methods can be applied to our problem finding the global
solution. Some test problems have been solved by the proposed algorithm.
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