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Abstract

This paper provides a unified approach that can directly verify the following results related to

First-Come-First-Served (FCFS): (a) in the case of a single server system, FCFS is optimal

for max of C (completion time) and max of F (flow time), (b) in the case of a multi server

system with identical servers, when customers have the equal processing time, any optimal

discipline for the total (sum) of C,F and W (waiting time) has the same service starting

times as FCFS, and (c) in the later case, FCFS is optimal for max of C, max of F and max

of W .

Keywords: Optimality of FCFS, Optimal non-preemptive queue disciplines, Parallel machine
scheduling with equal processing time.

1 Introduction

In queueing models FCFS is often assumed to be the queue discipline. Moreover, FCFS
is very common in real life situations such as the grocery stores. This paper aims to
(re)investigate certain optimality properties of this commonly used queue discipline. There
are several results on the optimality of FCFS in queueing literature (see [6], [4], [3], [2],
[12], [9], [8], [5]). Generality of these results necessarily depends on their setting: properties
of the queueing system, class of disciplines among which the comparison is made and the
optimality criterion that is considered. For instance, Gittins [6] shows that in (GI/GI/m)
queues, if the processing times are i.i.d across customers, then the expected waiting time
for a typical customer in steady state is minimum under FCFS among all non-preemptive
queue disciplines.1 More recent works provide rather general results: in (G/GI/m) queues,

1 In queueing theory, so called Kendall’s notation, A/B/m, is often used to describe queueing

systems. A describes the arrival time distribution, B describes the service times distribution and
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if the processing times are i.i.d across customers, the expected value of any Schur convex
function of customer waiting times and total workload after arrival of each customer, and
of any symmetric and convex function of customer flow times are minimum under FCFS,
among all non-preemptive queue disciplines (see [4], [2], [8], [11], [5]).

In this paper we treat the discipline design problem as a scheduling problem. Accord-
ingly, we use performance measures used in scheduling theory to evaluate different queue
disciplines: total and max of completion time, flow time and waiting time (C, F , W ), and
all of our results can be interpreted in the context of (n/m) parallel machine scheduling
problem. Our main findings are as follows. First, in Theorem 3.1 in Sect. 3 we show that,
in the case of a single server system, FCFS minimizes max of C and max of F . We then
consider systems with identical customers, i.e. with equal processing times. However, all
performance measures that we consider are convex and symmetric (hence, Schur convex)
and the equal processing time case is a special case of that being i.i.d. But in Theorem
3.2 in Sect. 3 we show that, when all customers have the same processing time, not only
FCFS is optimal for the the sum of C,F,W , but any optimal schedule has the same service
starting times as FCFS. Then, in Theorem 3.4 in Sect. 3 we also show that, in that case
FCFS is optimal for max ofW . Finally, in Theorem 4.1 and 4.2 in Sect. 4, we extend results
in Theorem 3.2 and 3.4 in Sect. 3 to the case of a multi server system with identical servers.

Most of our results are known in scheduling literature. For instance, results in Theo-
rem 3.1 are well known in scheduling theory (see [7], [1]). Results in Theorem 3.2 (a) and
4.1 follow from ”optimality of greedy schedules,” whereas results in Theorem 3.4 and 4.2
follow from a more general result in [10]. However, our proof technique is based on a recur-
sive reasoning and it is different than the other popular techniques: interchange argument,
forward and backward induction, majorization argument and linear and dynamic program-
ming. It is based on a simple observation that ”in order to show optimality of FCFS for
max (bottleneck)-problems, it suffices to compare feasible schedules over the last busy period
before system reaches its peak under FCFS,” and provides a direct, self-contained and unified
approach, used thoroughly in proving Theorem 3.1, 3.4, 4.2 in Sect. 3 and 4.

In the next section we introduce our notation and main definitions. In Section 3, we
consider single server systems and in Section 4 we consider multi server systems with identical
servers and the last section concludes.

2 The set up

Let there be n ∈ N customers J = {1, 2, ..., n} and a single server. Each customer i ∈ J
has a processing time pi ≥ 0 and an arrival time ti ≥ 0 and let p = (p1, ..., pn) ∈ Rn+ and
t = (t1, ..., tn) ∈ Rn+ be the corresponding vectors. Without loss of generality we may assume
that 0 ≤ t1 ≤ · · · ≤ tn. A schedule s = (s1, . . . , sn) ∈ Rn+ for a given (p, t) ∈ Rn+ × Rn+
assigns to each customer i ∈ J a starting time si ≥ 0 when the server begins to process it.
It is feasible if processing of a customer does not start before his arrival, si ≥ ti, i ∈ J , and
the server does not process more than one customer simultaneously, ∀i, j ∈ J with i ̸= j,
[si, si+pi)∩ [sj , sj+pj) = ∅. First-come-first-served-schedule (FCFSS) is a schedule s∗

that processes all jobs in the order of their arrival and does so as soon as possible: s∗1 = t1

the last entry, m describes the number of service channels. G stands for general and GI stands for

general independent distributions.
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and s∗i = max{s∗i−1 + pi−1, ti} for i = 2, . . . , n. Note that, according to the above definition
we only consider permutation schedules without preemption, but we allow the server to
stay idle when there are customers available for the service. From now on we only consider
feasible schedules and we first verify that the FCFSS is feasible.

Proposition 2.1. s∗is feasible for any (p, t) ∈ Rn+ × Rn+.

Proof. We can express the feasibility condition above as follows: si ≥ ti, i ∈ J , and ∀i, j ∈ J

such that i ̸= j, if si < sj , then si + pi ≤ sj . Then, by definition s∗ satisfies both of these

conditions.

A queue discipline is defined as a complete contingent plan of schedules. More formally,
a queue discipline is a mapping q : Rn+×Rn+ → Rn+ which assigns to each (p, t) ∈ Rn+×Rn+
a feasible schedule s. The FCFS is a queue discipline q∗ such that ∀(p, t) ∈ Rn+ × Rn+,
q∗(p, t) = s∗. The following performance measures are commonly used in both queueing
and scheduling theory. The flow time, the completion time and the waiting time for
customer i ∈ J under schedule s are the time that he spends in the queueing system, the time
that is needed before he gets the service completed and the time that he waits in the queue
until he gets the service, respectively. The corresponding formulas are: Fi(s) = si + pi − ti,
Ci(s) = si+pi and Wi(s) = si− ti. The sum (total) and the maximum of these measures
are defined as usual: F (s) =

∑n
1 Fi(s), Fmax(s) = max{F1(s), ..., Fn(s)}; C(s) =

∑n
1 Ci(s),

Cmax(s) = max{C1(s), ..., Cn(s)}; W (s) =
∑n

1 Wi(s), Wmax(s) = max{W1(s), ...,Wn(s)}.
A schedule s is an optimal schedule for the performance measure M if there is no

other schedule s′ such that M(s′) < M(s) and a queue discipline q is optimal for M if
∀(p, t) ∈ Rn+×Rn+, q(p, t) is optimal forM . Finally, the following permutation defined for any
set of finitely many real numbers is very useful in our proofs. Let α = (αk+1, ..., αk+m) ∈ Rm+
be a set ofm nonnegative real numbers and let απ = (απ1 , ..., απm) a permutation of α. Then
we call απ as ranking of α if απi ≤ απi+1 for i = 1, ...,m− 1.

3 Single server systems

Theorem 3.1. Consider a single server system and let (p, t) ∈ Rn+×Rn+ be arbitrary. Then

q∗ is optimal for Cmax and Fmax.

Proof. For the first claim, we need to prove that, given (p, t) ∈ Rn+×Rn+, for any schedule s,

Cmax(s) ≥ Cmax(s
∗). By definition, s∗i = max{s∗i−1 + pi−1, ti} for i = 2, ..., n, which implies

that s∗i + pi ≥ s∗i−1 + pi−1, for i = 2, ..., n and hence, Cmax(s
∗) = s∗n + pn.

Let us define j = max{i : 1 ≤ i ≤ n, s∗i = ti}. So, j is the the last customer in J who

gets the service at his arrival under s∗. Note that j is well defined since s∗1 = t1. For an

arbitrary schedule s, consider α = (sj , ..., sn) and its ranking απ = (sπ1 , ..., sπn−j+1). By

feasibility, si ≥ ti ≥ tj for i = j, ..., n, and sπn−j+1 + pπn−j+1 ≥ sπn−j + pπn−j + pπn−j+1 ≥
... ≥ tj +

∑n
i=j pi. By definition, Cmax(s) ≥ sπn−j+1 + pπn−j+1 . But since s∗i = s∗i−1 + pi−1

for i = j + 1, ..., n and s∗j = tj , Cmax(s
∗) = tj +

∑n
i=j pi. Hence, Cmax(s) ≥ Cmax(s

∗). This

proves the first claim.
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For the second claim, we need to prove that, given (p, t) ∈ Rn+ ×Rn+, for any schedule s,

Fmax(s) ≥ Fmax(s
∗). By definition, F1(s

∗) = p1 and for i = 2, ..., n, Fi(s
∗) = s∗i + pi − ti =

max{s∗i−1 + pi−1, ti} − ti + pi = max{s∗i−1 + pi−1 − ti, 0} + pi. Let k ∈ J be such that

Fmax(s
∗) = Fk(s

∗). Let us define j = max{i : 1 ≤ i ≤ k, s∗i = ti}. So, j is the the last

customer in {1, ..., k} who gets the service at his arrival under s∗. Note that j is well defined

since s∗1 = t1. Then by definition, Fk(s
∗) = s∗k + pk − tk = tj +

∑k
i=j pi − tk.

For an arbitrary schedule s = (s1, ..., sn), consider α = (sj , ..., sk) and its ranking απ =

(sπ1 , ..., sπk−j+1
). Note that tj ≤ tπ1 ≤ sπ1 and tπk−j+1

≤ tk and by feasibility we conclude

that Fπk−j+1
(s) = sπk−j+1

+ pπk−j+1
− tπk−j+1

≥ sπk−j
+ pπk−j

+ pπk−j+1
− tπk−j+1

≥ ... ≥
sπ1 +

∑k
i=j pi − tπk−j+1

≥ tj +
∑k
i=j pi − tk = Fk(s

∗). Since Fmax(s) ≥ Fπk−j+1
(s), this

completes the proof.

Results in Theorem 3.1 show that s∗ is always optimal for Cmax and Fmax. The following
example shows that for the other performance measures, such a general result does not hold.

Let n = 2 and t = (0, 1) and p = (10, 1). Consider schedule s = (2, 1). Then F (s) = 13 <
F (s∗) = 20; C(s) = 14 < C(s∗) = 21; W (s) =Wmax(s) = 2 < 9 =W (s∗) =Wmax(s

∗).

However, if all customers have the equal processing time, s∗ is optimal for all of these
performance measures.

Theorem 3.2. Let all customers have the equal processing time, pi = p0 ∈ R+, i ∈ J .

Then,

(a) schedule s is optimal for F (s),W (s)and C(s) if and only if sπi
= s∗i for all i ∈ J , where

sπ = (sπ1 , ..., sπn) is the ranking of s, and

(b) s∗ is optimal for the performance measures in (a). Moreover, s∗ is the unique optimal

schedule if and only if t ∈ Rn+ is such that ti + p0 < ti+2, for i = 1, ..., n− 2.

Proof. (a) Note that the objectives differ by a constant, hence the optimal schedules coin-

cide. Each objective take its minimum value whenever
∑
si is at its minimum. Let s be an

arbitrary schedule.

For the if part, it suffices to show that
∑
s∗i ≤

∑
si. Consider the ranking sπ =

(sπ1 , ..., sπn) of s. Since sπ is a permutation of s,
∑
sπi =

∑
si. Note that by feasibility,

sπj ≥ tj for all j = 1, ..., n since there must be at least j customers have arrived in order

πj to be the j′th customer to be served. In particular, sπ1 ≥ t1 = s∗1. For 2 ≤ i ≤ n,

if sπi−1 ≥ s∗i−1, then it is also true that sπi ≥ s∗i since sπi ≥ sπi−1 + p0 ≥ s∗i−1 + p0 and

sπi ≥ ti. But since sπ1 ≥ s∗1, we conclude that sπi ≥ s∗i , i ∈ J . Hence,
∑
sπi ≥

∑
s∗i .

For the only if part, suppose s is optimal. Then it must be the case that
∑
sπi =

∑
s∗i

and since it is also true that sπi
≥ s∗i , i ∈ J , the equality of the two sums is possible only if

each term in the sum is equal. This completes the proof.
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(b) The optimality of s∗ is trivial from (a). Note that, if s is an optimal schedule, then

sπ1 = s∗1 = t1, which implies that π1 = 1 since it is possible to assign t1 only to the customer

1. For the if part, suppose t1 + p0 < t3. Since t2 < t3, we conclude that t3 > s∗2. But for

an optimal schedule s, the only customer that can be scheduled at sπ2 = s∗2 is the customer

2 since no other customer is available at s∗2. Hence, for any optimal schedule s, π2 = 2.

Similarly, we conclude that πi = i for i = 3, ..., n. Hence, if s is optimal, then s = s∗.

For the only if part, let s∗ be the only optimal schedule and let there be j ∈ {1, ..., n−2}
such that tj + p0 > tj+2. Consider schedule s such that it agrees with s∗ in all positions

but (j + 1)′th and (j + 2)′th : sπi = s∗i for i ∈ J and πi = i for i ∈ J\{j + 1, j + 2} and

πj+1 = j + 2 and πj+2 = j + 1. Then by construction s is optimal and s ̸= s∗, which

contradicts to the uniqueness of s∗.

The theorem above can be interpreted as: when all customers have the same processing
time, the optimal schedule is characterized by the starting times of s∗. Moreover, from
this exact characterization, for any t ∈ Rn+, one can fully describe the set of corresponding
optimal schedules:

Corollary 3.3. Let all customers have the equal processing time, pi = p0 ∈ R+, i ∈ J , and

let t ∈ Rn+ be the vector of arrival times. Let us define L1, ..., Ln and i1, ..., in as follows:

Lk = {i ∈ N : 1 ≤ i ≤ n, s∗k ≥ ti} = {1, 2, ..., ik}. Then,

(a) L1 = 1, Ln = {1, ..., n} and k ≤ ik ≤ ik+1 ≤ n, for k = 1, ..., n, and

(b) There are φ =
n∏
k=1

(ik − k + 1) many distinct optimal schedules and every such schedule

can be generated by the following procedure:

Step 1: Assign for the first position of the schedule π1 = 1 and update Lk into L1
k by deleting

all the first entries of Lk, for k = 2, ..., n,

Step j for 2 ≤ j ≤ n: Assign for the j′th position of the schedule any πj ∈ Lj−1
j and update

Lj−1
k into Ljk by deleting all the first entries of Lj−1

k and replacing all πj in Lj−1
k by

the deleted first entry, for k = j + 1, ..., n.

Proof. (a) By definition L1 = 1, Ln = {1, ..., n} and k ≤ ik ≤ n, for k = 1, ..., n. Note that

if ik ∈ Lk, then ik ∈ Lk+1 for k = 1, ..., n since s∗k+1 > s∗k ≥ tik . Hence, ik ≤ ik+1 for

k = 1, ..., n.

(b) Note that every optimal schedule uniquely corresponds to an assignment

{π1, ..., πn : πk ∈ Lk, πk ̸= πj for k ̸= j}

and by construction the procedure above gives all such assignments for any given t ∈ Rn+.
Consider Step j: any customer in Lj−1

j can be assigned to the j′th position and those are

the only possible choices for that position. Note that, by construction there are (ij − j + 1)

elements in Lj−1
j . Hence, there are φ distinct optimal schedules.
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Let us demonstrate procedure in Corollary 3.3 with an example:

Let n = 6 and t ∈ R6
+ and p0 ∈ R+ be such that L1 = {1}, L2 = {1, 2}, Li = {1, 2, 3, 4, 5},

for 3 ≤ i ≤ 5, and L6 = {1, 2, ..., 6}. Let us construct a matrix M with Li in its i′th

row: M =


1
1 2
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5 6

.

In Step 1 we assign π1 = 1 and obtain an updated matrix: M1 =


1
. 2
. 2 3 4 5
. 2 3 4 5
. 2 3 4 5
. 2 3 4 5 6

.
In Step 2 we assign π2 = 2 since that is the only feasible assignment and update M1:

M2 =


1
. 2
. . 3 4 5
. . 3 4 5
. . 3 4 5
. . 3 4 5 6

.
In Step 3 we may assign any of {3, 4, 5} for π3 and let π3 = 4, we update M2: M3 =
1
. 2
. . 3 4 5
. . . 3 5
. . . 3 5
. . . 3 5 6

.
In Step 4 we can assign any of {3, 5} for π4 and let π4 = 5, we update M3: M4 =
1
. 2
. . 3 4 5
. . . . 5
. . . . 3
. . . . 3 6

.

Then, for π5 the only feasible assignment is 3 and for π6 its 6: M6 =


1
. 2
. . 3 4 5
. . . . 5
. . . . 3
. . . . . 6

.

Theorem 3.4. When all customers have the equal processing time, pi = p0 ∈ R+, i ∈ J , s∗

is optimal for Wmax.
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Proof. By definition, W1(s
∗) = 0 and for i = 2, ..., n,

Wi(s
∗) = s∗i − ti = max{s∗i−1 + p0, ti} − ti = max{s∗i−1 + p0 − ti, 0}.

Let k ∈ J be such that Wmax(s
∗) = Wk(s

∗). Let us define j = max{i : 1 ≤ i ≤ k, s∗i = ti}.
So, j is the the last customer in {1, ..., k} who gets the service at his arrival under s∗. Note

that j is well defined since s∗1 = t1. Then by definition,Wk(s
∗) = s∗k−tk = tj+(k−j)·p0−tk.

For an arbitrary schedule s, consider α = (sj , ..., sk) and its ranking απ = (sπ1 , ..., sπk−j+1
).

Note that tj ≤ tπ1 ≤ sπ1 and tπk−j+1
≤ tk and by feasibility we conclude that Wπk−j+1

(s) =

sπk−j+1
− tπk−j+1

≥ sπ1 + (k − j) · p0 − tπk−j+1
≥ tj + (k − j) · p0 − tk = Wk(s

∗). Since

Wmax(s) ≥Wπk−j+1
(s), this completes the proof.

4 Multi server systems with equal processing time

In this section we extend the main results in Sect. 3 to a multi server system. Before we
state the main results, we shall introduce some more notations and extend some of the main
definitions to the new setting. Let there be k ∈ N identical servers,M = {m0,m1, ...,mk−1}.
For i ∈ J , let z(i), y(i) ∈ Z+ be such that i = z(i) · k+ y(i) with y(i) < k, i.e. i ≡ y mod k.
Each customer has a processing time p ≥ 0 and let t = (t1, ..., tn) ∈ Rn+ be the vector of
customer arrival times. As before we may assume that 0 ≤ t1 ≤ · · · ≤ tn. We redefine
the notions of schedule, feasibility and FCFSS, and the other notions are defined same
as in Sect. 2. A schedule [s] = [(s1, 1M ), . . . , (sn, nM )] for a given t ∈ Rn+ assigns to
each customer i ∈ J a pair of (si, iM ) where si ≥ 0 is the starting time for i gets the
service and iM ∈ M is the corresponding server. It is feasible if processing of a customer
does not start before his arrival: si ≥ ti, ∀i ∈ J and none of the servers processes more
than one job simultaneously: ∀m ∈ M , ∀i, j ∈ J with i ̸= j, if iM = jM = m, then
[si, si + p) ∩ [sj , sj + p) = ∅. First-come-first-served-schedule (FCFSS) is a schedule
[s∗] = [(s∗1, 1

∗
M ), . . . , (s∗n, n

∗
M )] that processes all jobs in the order of their arrival and does

so as soon as possible: for 1 ≤ i < k, (s∗i , i
∗
M ) = (ti,mi); for i = k, (s∗k, k

∗
M ) = (tk,m0); and

for k < i ≤ n, (s∗i , i
∗
M ) = (max{s∗(z(i)−1)·k+y(i) + p, ti},my(i)).

Note that FCFSS can be defined up to an arbitrary assignment of the initial k arrivals
to the servers. Here we have chosen a particular one, i′th arrival is assigned to i′th server.
Since our enumeration of the servers was arbitrary, none of the results that follow depend on
this particular choice. Before we state the main results of this section we prove the following
lemma.

Lemma 3. Let [s] be any schedule and s = (s1, ..., sn) be the vector of the starting times of

[s]. Consider sπ = (sπ1 , ..., sπn), the ranking of s. For any (k+1) sequence (sπl
, sπl+1

, ..., sπl+k
),

∃j ∈ {0, ..., k − 1} such that sπl+k
≥ sπl+j

+ p.

Proof. Since there are k servers, there are at least two customers πq, πi with q < i among

(πl, ..., πl+k) who assigned to the same server, by the pigeonhole principle. Then the result

follows by feasibility: sπl+k
≥ sπi ≥ sπq + p.
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The following results are extensions of Theorem 3.2 and 3.4, subsequently.

Theorem 4.1. Schedule [s] is optimal for F (s), W (s) and C(s) if and only if sπi = s∗i for

all i ∈ J where sπ = (sπ1 , ..., sπn) is the ranking of s = (s1, ..., sn), the vector of starting

times of [s].

Proof. Note that all of the measures in the theorem take their minimum value whenever∑
si is at its minimum. Let [s] be an arbitrary schedule and s be the vector of starting time

of [s].

For the if part, it suffices to show that
∑
s∗i ≤

∑
si. Consider the ranking sπ =

(sπ1 , ..., sπn) of s. Since sπ is a permutation of s,
∑
sπi =

∑
si. Note that by feasibility,

sπj ≥ tj for all j ∈ J since there must be at least j customers have arrived in order πj be

the j′th customer to be served. In particular, for 1 ≤ i ≤ k, sπi ≥ s∗i = ti. For k < i ≤ n,

if sπ(z(i)−1)·k+y(i)
≥ s∗(z(i)−1)·k+y(i), then it is also true that sπi ≥ s∗i since sπi ≥ ti and

by Lemma 3, sπi ≥ sπ(z(i)−1)·k+y(i)
+ p ≥ s∗(z(i)−1)·k+y(i) + p. But since sπi ≥ s∗i = ti for

1 ≤ i ≤ k, we conclude that sπj
≥ s∗j for all j ∈ J . Hence,

∑
sπi

≥
∑
s∗i .

For the only if part, suppose [s] is optimal. Then it must be the case that
∑
sπi =

∑
s∗i

and since it is also true that sπi ≥ s∗i for all i ∈ J , the equality of the two sums is possible

only if each term in the sum is equal. This completes our proof.

Theorem 4.2. [s∗] is optimal for Wmax, Cmax and Fmax.

Proof. We prove the result for Wmax and essentially the same procedure works for Cmax

and Fmax. By definition, for 1 ≤ i ≤ k,Wi(s
∗) = 0 and for k < i ≤ n, Wi(s

∗) = s∗i − ti =

max{s∗(z(i)−1)·k+y(i) + p, ti}− ti = max{s∗(z(i)−1)·k+y(i) + p− ti, 0}. Let r ∈ {1, ..., n} be such

that Wmax(s
∗) =Wr(s

∗).

Let us define j = max{i : 1 ≤ i ≤ r, i = z(i) · k + y(r), s∗i = ti}. So, j is the the last

customer in {y(r), k+ y(r), 2 · k+ y(r), ..., r} (here we identify 0′th customer with k′th) who

gets the service at his arrival under [s∗]. Note that j is well defined since s∗y(r) = ty(r).

Then by definition, Wr(s
∗) = s∗r − tr = tj + (z(r) − z(j)) · p − tr. For an arbitrary

schedule [s] with the vector of starting times s, consider α = (sj , sj+1, ..., sr) and its ranking

απ = (sπ1 , ..., sπr−j+1). Note that tj ≤ tπ1 ≤ sπ1 and tπr−j+1 ≤ tr and by Lemma 3

we conclude that Wπr−j+1(s) = sπr−j+1 − tπr−j+1 ≥ sπ1 + (z(r) − z(j)) · p − tπr−j+1 ≥
tj + (z(r) − z(j)) · p − tr = Wr(s

∗). Since Wmax(s) ≥ Wπr−j+1(s), this completes our

proof.

5 Conclusion

Since FCFS is commonly used both in theory and in applications, its optimality properties
receive considerable attention. This paper provides a technique that can be used to investi-
gate optimality properties related to FCFS in a single and (identical) multi server settings.
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The underlying idea of our technique is to compare schedules (queue disciplines) over the
last busy period before the system reaches to its peak under FCFS. Then, max -objectives can
be expressed as recursive sums over that period and optimality proofs pin down to simple
comparisons of sums of real numbers. Hence, our approach provides simple, unified and
self-contained proofs for optimality results related to FCFS.
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