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Abstract

In this work, we present the method of successive approximations (shortly MSA) for obtain-

ing the exact solution of Laplace equation with Dirichlet and Neumann boundary conditions

and of heat-like and wave-like equations with variable coefficients. The results obtained by

MSA are compared with known variational iteration method (VIM), homotopy-perturbation

method (HPM), homotopy analysis method (HAM) and Adomian decomposition method

(ADM) results. It is shown that all the above mentioned methods are equivalent for Laplace

equation, heat-like and wave-like equations.

Keyword 1. Method of Successive approximations; exact solution of Laplace equation; heat-
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1 Introduction

Very recently, some promising exact analytical solution methods for Laplace equation are
proposed, such as, He’s variational iteration method (VIM) [1], homotopy-perturbation
method (HPM)[3], Adomian decomposition method (ADM) [3,5] and homotopy analysis
method (HAM)[2]. Some of these methods were also successfully employed to solve heat-
like and wave-like equations with variable coefficients [4]. They give rapidly convergent
successive approximations of the exact solution if such a solution exists. For concrete prob-
lems, a few number of approximations can be used for numerical purposes with high degree

67



Mongolian Mathematical Journal 68

of accuracy. We aim in this work to effectively employ the well-known MSA to establish ex-
act solutions for Laplace equation, heat-like and wave-like equations. In section 2 we present
fixed-point iteration method. Based on this, we consider the MSA. In section 3 we apply
the MSA to obtain the exact solutions for Laplace equation with Dirichlet and Neumann
boundary conditions. We showed that the MSA is equivalent to VIM, HPM and ADM for
Laplace equation. Moreover, we show that the MSA is also applicable for Helmholtz equa-
tion. In section 4 we apply the MSA to obtain the exact solutions for heat-like and wave-like
equations with variable coefficients

2 Fixed-point iteration and method of successive approximations

Let
f(u) = 0 (1)

be a nonlinear operator equation to be solved. The idea of fixed-point iteration consists of
transforming Eq.(1) into an equivalent equation

u = Φ(u) (2)

and of constructing a sequence {un} with the help of the iterative scheme

un+1 = Φ(un), n = 0, 1, . . . (3)

for a given starting value u0. It is known that the iterative process (3) is convergent, if
the operator Φ is contractive mapping with Lipschitz constant θ < 1 [6]. The iteration
(3) is usually called the method of successive approximations. As mentioned above, if the
sequence {un} is convergent, it gives the exact solution of Eq.(1) in the limit n → ∞. In
practice, however, if a sufficiently good initial approximation is known, only a few iterations
are needed.

3 Exact solution of Laplace equation with Dirichlet and Neumann

boundary conditions

We consider the Laplace equation

uxx + uyy = 0, 0 < x, y < π (4)

subject to one of the following boundary conditions [1]

u(0, y) = 0 u(π, y) = sinhπ · cos y,

u(x, 0) = sinhx, u(u, π) = − sinhx, (4a)

u(0, y) = sin y, u(π, y) = coshπ · sin y,

u(x, 0) = 0, u(x, π) = 0, (4b)

ux(0, y) = ux(π, y) = 0,
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uy(x, y) = 0, uy(x, π) = 2 cos 2x · sinh(2π) (4c)

and
ux(0, y) = ux(π, y) = 0,

uy(x, 0) = cosx, uy(x, π) = coshx · cosx. (4d)

The exact solutions of (4), satisfying one of the boundary conditions (4a)-(4d) are sinhx ·
cos y, coshx · sin y, cosh(2y) cos 2x and sinh y · cosx respectively.

In order to use the MSA we must transform Eq.(4) into an equivalent one of kind (2).
To this end we integrate Eq.(4) two times with respect to x on the interval (0, x). As a
result we have

u(x, y) = u(0, y) + xux(0, y)−
∂2

∂y2

x∫
0

dξ

ξ∫
0

u(x, y)dx. (5)

Analogously, we can integrate Eq.(4) twice with respect to y on the interval (0, y) and we
get

u(x, y) = u(x, 0) + yuy(x, 0)−
∂2

∂x2

y∫
0

dη

η∫
0

u(x, y)dy. (6)

The MSA (3) for (5) and (6) has a form

un+1(x, y) = un(0, y) + xunx(0, y)−
∂2

∂y2

x∫
0

dξ

ξ∫
0

un(x, y) n = 0, 1, . . . (7)

with u0(x, y) ̸= 0 and

un+1(x, y) = un(x, 0) + yuny (x, 0)−
∂2

∂x2

y∫
0

dη

η∫
0

un(x, y)dy n = 0, 1, . . . (8)

with u0(x, y) ̸= 0, respectively. In (7) and (8) we have to choose the initial approximation
u0(x, y) ̸= 0, satisfying at least two prescribed boundary conditions. We will use iteration
(7) for Laplace equation with Dirichlet boundary conditions (4a) and (4b) and iteration (8)
for Laplace equation with Neumann boundary conditions (4c) and (4d).

Proposition 1. The MSA and VIM are equivalent for Laplace equation (4).

Proof. The variational iteration method (VIM) for Laplace equation (4) gives the following

approximations [1]

un+1(x, y) = un(x, y) +

x∫
0

(ξ − x)

(
∂2un(ξ, y)

∂ξ2
+
∂2un(ξ, y)

∂y2

)
dξ (9a)

or

un+1(x, y) = un(x, y) +

y∫
0

(ξ − y)

(
∂2un(x, ξ)

∂x2
+
∂2un(x, ξ)

∂ξ2

)
dξ. (9b)
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Using integration by parts it is easy to show that

x∫
0

(ξ − x)
∂2un(ξ, y)

∂ξ2
dξ = xunx(0, y)− un(x, y) + un(0, y) (10)

and
x∫

0

(ξ − x)un(ξ, y)dξ = −
x∫

0

dη

η∫
0

un(ξ, y)dξ. (11)

Substituting (10) and (11) into (9a) we get (7). Analogously proved the equivalence of (9b)

and (8).

Proposition 2. The HPM and ADM are equivalent for Laplace equation, provided that
∂2u0(x,y)

∂x2 = 0.

Proof. The homotopy-perturbation method (HPM) for Laplace equation (4) gives the ap-

proximation [3]:

u = lim
n→∞

(ν0 + ν1 + ν2 + ν3 + · · ·+ νn), (12)

where

∂2ν0

∂x2
= 0,

∂2ν1

∂y2
= −∂

2ν0

∂y2
, (13)

. . . . . .
∂2νn+1

∂x2
= −∂

2νn

∂y2

while the Adomian decomposition method (ADM) for Laplace equation (4) gives the ap-

proximation [3]

u = lim
n→∞

(u0 + u1 + u2 + · · ·+ un), (14)

where

un+1(x, y) = −L−1
xxLyyu

n(x, y), n = 0, 1, . . . Lxx =
∂2

∂x2
; Lyy =

∂2

∂y2
. (15)

The comparison (13) and (15) shows that they are equivalent for Laplace equation when
∂2u0(x,y)

∂x2 = 0.

Proposition 3. The ADM and MSA are equivalent for Laplace equation provided that the

initial approximation ū0 of ADM is given by

ū0 = u0(0, y) + xu0x(0, y) (16)

or

ū0(x, y) = u0(x, 0) + yu0y(x, 0), (17)

where u0 is an initial approximation of MSA.
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Proof. The ADM gives [3] approximations ūn(x, y) given by (15), i.e.

ūn+1 = −L−1
xxLyyū

n(x, y), n = 0, 1, . . .

Using this into (7) we have

u1(x, y) = ū0 + ū1,

u2(x, y) = ū0 − L−1
xxLyyū

0 − L−1
xxLyyū

1 = ū0 + ū1 + ū2,

. . . . . . . . .

un(x, y) = ū0 + ū1 + ū2 · · ·+ ūn.

It means that the n-th approximation un of MSA coincides with
n∑
k=0

ūk, the partial sum of

ADM.

From the propositions 3.1, 3.2 and 3.3 immediately follows:

Theorem 2. The MSA, VIM, HPM and ADM are equivalent for Laplace equation provided

that ū0 = u0(0, y) + x · u0x(0, y).

Proof. From proposition 3.1 and 3.3 it follows that MSA ⇔ ADM ; MSA ⇔ V IM hence

MSA ⇔ ADM ⇔ V IM . From this and from proposition 3.2 it follows that all the above

mentioned methods are equivalent.

The MSA works well not only for Laplace equation, but also for Helmholtz equation

∆u+ cu = 0. (18)

It is easy to show that the equivalent equation to (18) is

u(x, y) = u(0, y) + x · ux(0, y)−
∂2

∂y2

x∫
0

dξ

ξ∫
0

u(ξ, y)dξ − c

x∫
0

dξ

ξ∫
0

u(ξ, y)dξ.

For example, we consider equation (18) with c = −2 subject to boundary conditions:

u(0, y) = ey, u(1, y) = e1+y,

u(x, 0) = ex, u(x, 1) = e1+x. (19)

In this case the MSA is given by

un+1(x, y) = ey + x · unx(0, y)−
∂2

∂y2

x∫
0

dξ

ξ∫
0

un(ξ, y)dξ + 2

x∫
0

dξ

ξ∫
0

un(ξ, y)dξ n = 0, 1, . . .

(20)
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If we choose u0(x, y) = ey(1+ x), then from (20) we obtain the following successive approx-
imations

u1(x, y) = ey
(
1 + x+

x2

2
+
x3

3!

)
u2(x, y) = ey

(
1 + x+

x2

2
+
x3

3!
+
x4

4!
+
x5

5!

)
and

lim
n→∞

un(x, y) = ex+y,

which is the exact solution of (18), (19).

4 Exact solutions of heat-like and wave-like equations with variable

coefficients

Recently, the VIM and Adomian method have been used to solve various kinds of heat-like
and wave-like equations [4]. In this section the MSA is presented and is shown that all the
above mentioned methods are equivalent for these equations.
4.1 We will use the MSA to obtain the exact solution of heat-like equation. We consider
the initial-boundary value problems [4]
Example 1.

ut =
1

2
x2uxx, 0 < x < 1, t > 0

u(0, t) = 0, u(1, t) = et,

u(x, 0) = x2. (21)

Example 2.

ut =
1

2
(y2uxx + x2uyy), 0 < x, y < 1, t > 0

ux(0, y, t) = 0, ux(1, y, t) = 2 sinh t,

uy(x, 0, t) = 0, uy(x, 1, t) = 2 cosh t,

u(x, y, 0) = y2. (22)

Example 3.

ut = x4y4z4 +
1

36

(
x2uxx + y2uyy + z2uzz

)
, 0 < x, y, z < 1, t > 0

u(0, y, z, t) = 0, u(1, y, z, t) = y4z4(et − 1),

u(x, 0, z, t) = 0, u(x, 1, z, t) = x4z4(et − 1),

u(x, y, 0, t) = 0, u(x, y, 1, t) = x4y4(et − 1),

u(x, y, z, 0) = 0. (23)
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The exact solutions of Examples 1-3 are x2et, x2 sinh t+ y2 cosh t and
(xyz)4(et − 1) respectively.
The VIM for (21) leads to the following iteration formula [4]

un+1(x, t) = un(x, t)−
t∫

0

{
∂un(x, ξ)

∂ξ
− 1

2
x2
∂2un(x, ξ)

∂x2

}
dξ, n = 0, 1, . . . (24)

while the MSA for (21) looks like

un+1(x, t) = un(x, 0) +
x2

2

∂2

∂x2

t∫
0

un(x, ξ)dξ, n = 0, 1, . . . (25)

If we take into account
t∫

0

∂un(x, ξ)

∂ξ
dξ = un(x, t)− un(x, 0)

in (24), then we deduce that the VIM and MSA are equivalent methods for (21). Anal-
ogously, it is easy to show that the VIM and MSA are equivalent methods for (22) and
(23).

4.2 Now we use the MSA to obtain the exact solution of wave-like equation. We consider
next initial and boundary value problems [4]
Example 4.

utt =
1

2
x2uxx, 0 < x < 1, t > 0

u(0, t) = 0, u(1, t) = 1 + sinh t

u(x, 0) = x, ut(x, 0) = x2. (26)

Example 5.

utt =
1

12
(x2uxx + y2uyy), 0 < x, y < 1, t > 0

ux(0, y, t) = 0, ux(1, y, t) = 4 cosh t

uy(x, 0, t) = 0, uy(x, 1, t) = 4 sinh t

u(x, y, 0) = x4, ut(x, y, 0) = y4. (27)
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Example 6.

utt = x2 + y2 + z2 +
1

2
(x2uxx + y2uyy + z2uzz), 0 < x, y, z < 1, t > 0

u(0, y, z, t) = y2(et − 1) + z2(e−t − 1),

u(1, y, z, t) = (1 + y2)(et − 1) + z2(e−t − 1),

u(x, 0, z, t) = x2(et − 1) + z2(e−t − 1),

u(x, 1, z, t) = (1 + x2)(et − 1) + z2(e−t − 1),

u(x, y, 0, t) = (x2 + y2)(et − 1),

u(x, y, 1, t) = (x2 + y2)(et − 1) + (e−t − 1),

u(x, y, z, 0) = 0, ut(x, y, z, 0) = x2 + y2 − z2. (28)

The exact solutions of Examples 4,5 and 6 are x + x2 sinh t, x4 cosh t + y4 sinh t and (x2 +
y2)(et − 1) + z2(e−t − 1) respectively.
The VIM for an example 4 gives the following iteration formula [4]:

un+1(x, t) = un(x, t) +

t∫
0

(ξ − t)

{
∂2un(x, ξ)

∂ξ2
− 1

2
x2
∂2un(x, ξ)

∂x2
dξ,

}
(29)

while the MSA gives:

un+1(x, t) = un(x, 0) + unt (x, 0)t+
1

2
x2

∂2

∂x2

t∫
0

dη

η∫
0

un(x, ξ)dξ. (30)

Substituting (10), (11) into (29), we get (30). It means that the VIM and MSA are equivalent
for example 4. Analogously, it is easy to see that the VIM and MSA are equivalent methods
for examples 5 and 6.

5 Comparison among MSA, HPM, VIM and ADM

In sections 3 and 4 we showed that these methods are equivalent for Laplace equations,
heat-like and wave-like equations. For comparison, we present in Table 1 and 2 the selection
of zeroth approximation u0(x, y) in various methods for Laplace equation and heat-like and
wave-like equations respectively.

Table1 The initial approximation u0(x, y)

Boundary condition (4a) (4b) (4c) (4d)

V IM [1] x cos y
(
1 + x2

2

)
sin y (1 + 2y2) cos 2x

(
y + y3

3!

)
cosx

HAM [2] x cos y
(
1 + x2

2

)
sin y (1 + 2y2) cos 2x y cosx

HPM [3] x cos y 1 + x(coshπ−1)
π cos 2x y cosx

MSA x cos y sin y cos 2x y cosx
ADM [3] x cos y sin y cos 2x y cosx
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Table2 The initial approximation u0(x, y)

Examples 1 2 3 4 5 6
VIM[4] x2 y2 x4y4z4t x+ x2t x4 + y4t (x2 + y2 − z2)t
MSA x2 y2 0 x x4 0

All the above mentioned methods with initial approximations given in Table 1 and 2 give
the exact solutions of considered problems.
It can be seen from the examples studied, that:

1. Comparison among MSA, HPM, VIM and ADM shows that although the results of
these method when applied to the Laplace equation, heat-like and wave-like equations
are the same, MSA does not require specific algorithms, such as ADM and VIM.

2. The MSA is much easier and more convenient than others considered above. The
optimal identification of Lagrange multipliers via the variational theory can be difficult
in VIM. In nonlinear problems arise the difficulties to calculate so-called Adomian
polynomials, when using ADM [1].

6 Conclusion

In this paper, by the method of successive approximations , we obtain the exact solutions of
Laplace equation and various kinds of heat-like and wave-like equations. MSA, like HPM,
does not require specific algorithms and complex calculations such as ADM or construction
of correction functionals using general Lagrange’s multipliers in VIM. It may be concluded
that this method is very powerful and efficient one in finding exact solutions for wide classes
of problems.
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