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Abstract

In this note I prove theorems on reductions of connected bipartite graphs
and connected bipartite planar graphs. In both cases, 2-connected families
will also be considered. When a set of reductions for a family is concerned it
is also shown that each reduction in the set is necessary.

1 Contractions and Minors

One of the first theorems that an undergraduate reader learns in a graph theory
course is the characterization of bipartite graphs as graphs containing no odd cycles
[4, Theorem 4.7, page 106] or [7, Proposition 1.6.1, page 18]. This is one of the
examples of a good characterization, in that if a graph is bipartite a bipartition
of its set of vertices may be produced efficiently and if it is not bipartite then an
odd cycle is found quickly. A computational characterization of bipartite graphs is,
however, still desirable: a characterization that directly provides a computational
procedure by which all bipartite graphs up to any order may be computed and
constructed. This paper will aim at such a characterization of several classes of
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bipartite graphs. A computational generation of graphs (or other mathematical
objects) may be effected by reversal of the operations of reductions. In addition,
I also emphisize that the reduction (generation) operations should provide specific
minor inclusions. These two criteria are set down by a theorem of Tutte from 1960’s
on the family of 3-connected graphs [7, Theorem 3.2.5, page 64] and a theorem of
Steinitz on triangulations of the sphere [22]. There are a collection of results of this
type in the literature.

Connectivity: For the family of 3-connected graphs, the theorem of Tutte is now a
theorem in textbooks [7, Theorem 3.2.5, page 64]. The family of 2-connected
graphs also has a reduction theorem of this form (see [7, Proposition 3.1.2]).
For the family of 4-connected graphs, there are reduction theorems established
by many groups of authors (see [9, 10, 15, 16, 17, 20, 21]).

Degree condition: For the family of 3-connected cubic graphs there is the classical
theorem of Tutte [23]. The structure of the family of r-connected r-regular
graphs for r ≥ 4 is not known to me. Work in [2] deals with the family of
3-connected graphs with minimum degree not less than 4.

Embedded: For triangulations of the sphere we have the classical theorem of
Steinitz [22]. The work on the class of quadrangulations of the sphere include
[1, 5, 6, 19], with [5] appearing most recently.

Girth: The paper [13] deals with the family of 3-connected triangle-free (i.e., girth
at least 4) graphs.

Let G = (V,E) be a finite undirected simple graph. For X, Y ⊆ V (G), denote

[X, Y ] = {xy ∈ E(G) : x ∈ X, y ∈ Y }.

In words, [X, Y ] is the set of edges of G with one end in X and the other in Y .

A contraction of G is defined to be a partition {V1, V2, · · · , Vs} of V such that for
each i = 1, 2, · · · , s, the induced subgraph G|Vi

is connected. The partition naturally
gives rise to a surjective mapping from G to a graph H, also called a contraction
(graph) of G. The contraction (graph) H is the graph with

V (H) = {V1, V2, · · · , Vs}, E(H) = {ViVj : i 6= j, [Vi, Vj] 6= ∅}.

The mapping f : G→ H is called a contraction (mapping) from G onto H. If there
exists a contraction mapping f : G→ H then G is said to be contractible to H. By
the definition of H above, H is a simple graph. Extreme but revealing examples
of contractions are the one vertex contraction K1 of any connected graph G and
automorphisms of G. In particular, 1 : G→ G is a contraction.
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Suppose that R ⊆ G is a connected subgraph. Then the contraction of R in G,
denoted G/R, is given by the partition

{V (R), {v1}, · · · , {vm}}

where V (G)− V (R) = {vi : 1 ≤ i ≤ m}.

Our definition of a contraction agrees with that of Tutte in his theorem ([7,
Proposition 3.1.2]). Note that this definition is adequate for directed graphs, infinite
graphs and hypergraphs. There are two other variations of a contraction simply by
allowing multiple edges (by allowing a number of edges between vertices Vi and Vj
that is equal to the size of [Vi, Vj]) or loops (by dropping the condition i 6= j in our
definition).

A graph H is a minor of G, denote H ≤ G, if G has a subgraph contractible to
H. That is, there is a subgraph K ⊆ G and there is a contraction f : K → H. This
may be better understood by the following commutative diagram, which comes very
handy when proving basic properties of minors.

K G

H

//
⊆

��

f

??

≤

In this diagram each arrow asserts the existence of a function. The arrow K → G is
a subgraph inclusion mapping (or embedding of K as a subgraph in G), the arrow
f : K → H is a contraction mapping as defined above, and the arrow H → G is a
minor inclusion which completes the diagram.

Examples of basic properties where the diagram above provide easy facility for
their proofs are: (1) ≤ is a quasi order in a family of graphs; (2) ≤ is almost a
partial order in families of graphs (meaning that the binary relation ≤ is reflixive
and transitive). Note that ≤ may be regarded as also antisymmetric if isomorphic
graphs are considered equal (computationally, this depends on the NP -complete
problem of isomorphism testing). Under such an assumption, ≤ may be considered
to be a partial order.

Denote by Ġ a subdivision (i.e., a homeomorph) of a graph G. This is usually
called a topological minor. Some obvious facts concerning minors are: (1) If H ⊆ G
then H ≤ G; (2) If f : G → H is a contraction, then H ≤ G; (3) If Ḣ ⊆ G then
H ≤ G; Note that the converse is not true in general; (4) (J ≤ H) ∧ (H ≤ G) ⇒
J ≤ G; (5) If ∆(G) ≤ 3, then H ≤ G⇔ Ḣ ⊆ G; (6) If H ≤ G and G is planar then
H is also planar.
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Property (2) above states that if H is a contraction graph of G, then H ≤ G.
The proof of this is direct from the following diagram:

G G

H

//
1

��

f

??

≤

The converse is not true. Let P denote the Petersen graph. Then K3,3 ≤ P and
there exists no contraction f : P → K3,3. Note that there exists a contraction
P → K5.

In this note, properties of graphs and families of graphs are denoted by mathe-
matics script fonts. The reason for this is to facilitate statements of theorems, their
proofs and discussions.

Let P be a property of graphs. A connected subgraph R ⊆ G is said to be
contractible with respect to P or P-contractible if G ∈ P and the contraction
G/R ∈P. For the class of 3-connected graphs, various results have been obtained
in [11] on contractible subgraphs R where 3 ≤ |R| ≤ 4. Numerous interesting
problems on contractible subgraphs remain open. The reader is referred to [11, 13]
and a recent survey [12].

Let P be a property of graphs. A graph G is said to be minimal with respect to
P, or minimally P, if G ∈P and for each e ∈ E(G), G− e 6∈P. A graph is P-
critical if G ∈P and for each x ∈ V (G), G−x 6∈P. Thus, for example, a minimally
k-connected graphs is a graph G that is k-connected but for each e ∈ E(G), G− e
is not k-connected. A graph G is critically k-connected if G is k-connected but for
each x ∈ V (G), G− x is not k-connected.

Let G be a connected graph and S ⊆ V (G). If G− S is not connected then S is
called a separator of G. If G 6= Kn then the least cardinality of a separator is called
the connectivity (number) of G, and it is denoted by κ(G). If κ(G) ≥ n, then G is
called an n-connected graph. To complete this definition, it is necessary to assert
by agreement that κ(Kn) = n− 1. This is a negative approach to life. The positive
approach is: a graph is k-connected if there exist at least k internally disjoint paths
connecting any two vertices of G. The least k such that G is k-connected is defined
to be the connectivity of G. Menger’s famous theorem [7, Theorem 3.3.1, page 66]
asserts that the two definitions are equivalent. For a separator S ⊆ V (G) (not
necessarily minimum), the union of at least one but not all components of G− S is
called a fragment of G−S. Thus if F is a fragment of G−S, then G−F −S is also
a fragment of G − S. A minimal fragment is called an atom or an end component.
Note that it is standard to prove that if S is a minimum separator of G, then each
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vertex of S has a neighbor in every component of G− S.

For a graph G and x ∈ V (G), denote as usual by N(x) = {v ∈ V (G) : vx ∈
E(G)}. Denote N̄(x) = {x} ∪N(x).

In this paper, we obtain theorems on reductions of several families of bipartite
graphs. Every reduction provides a proper minor inclusion.

2 Connected Bipartite Graphs

In this section, we consider several families of connected simple bipartite graphs and
prove theorems on reductions of graphs in these families and on existence of large
proper minors in the same family.

First observe that a star contraction provides simple reductions for several fam-
ilies of connected simple bipartite graphs.

Theorem 2.1. Let G 6= K2 be a connected bipartite graph. Let x ∈ V (G) with
k = d(x) = δ(G) and N(x) = {x1, x2, · · · , xk}. Then

H = G/G|N̄(x)

is a connected bipartite graph.

Proof. Let the bipartition of G be {X, Y } with x ∈ X, thus N(x) ⊆ Y . Let
f : G → H be the contraction determined by the operation in the definition of H
with y = f(N̄(x)) ∈ V (H) − V (G). Since G is connected and H is contraction of
G, H is connected. Let

X ′ = X − {x}, Y ′ = (Y − N̄(x)) ∪ {y}.

Then {X ′, Y ′} is a bipartition of H. Hence H is a connected bipartite graph.

Note that since G is bipartite G|N̄(x) ' K1,r (r = d(x)) is a star centered at
x with each vertex in N(x) having degree 1. Hence the verbal expression “star
contraction”.

In Figure 1, we illustrate the reductions used in Theorem 2.1 for the complete
bipartite graph K3,3, giving a sequence

K3,3 −→ K1,2 −→ K1,1 ' K2.
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Figure 1: Reductions of bipartite graphs.

Theorem 2.2. Let G 6= K2 be a connected bipartite planar graph. Let x ∈ V (G)
with k = d(x) = δ(G) and N(x) = {x1, x2, · · · , xk}. Then

H = G/G|N̄(x)

is a connected bipartite planar graph.

Proof. The graph H connected and bipartite as in the proof of Theorem 2.1. In a
plane embedding of G, N̄(x) in contained in the interior of a plane region containing
no other vertex or edge of G. The new vertex y ∈ V (H) is embedded in this region.
Hence H is planar. Note also that k ≤ 5.

For the family of connected bipartite planar graphs, the existence of a large
proper minor in the same family is guaranteed.

Corollary 2.1. If G is a connected bipartite planar graph, then there exists a
connected bipartite planar graph H such that H ≤ G and |G| − 4 ≤ |H| ≤ |G| − 1.

Proof. Since G is planar and k = d(x) = δ(G), k ≤ 5 and hence the assertion.

The operation in Theorem 2.2 are illustrated using the 3-cube Q3 and the Her-
schel’s graph in Figure 2. In this figure, the subgraphs G|N̄(x) used in the contraction
are drawn in heavy lines. Clearly, contraction of either one of the K1,3 in K2,3 cen-
tered at a black vertex gives K2.

I have recently obtained a theorem on reductions of 3-connected graphs of min-
imum degree at least 4. This is a continuation of the work in [2].

Note that there should be a theorem on reductions of connected graphs of min-
imum degree at least 2 (—this should be fairly straightforward), and a theorem on
reductions of 2-connected graphs of minimum degree at least 3 (I have a sketch proof
of such a theorem). These, together with my recent results on 3-connected graphs
of minimum degree at least 4 makes the initial steps of this study fairly complete.

6



−→ −→

Figure 2: Reductions of bipartite planar graphs.

From now till the end of the section and till the end of the paper, for r ≥ 1,
denote

Vr(G) = {u ∈ V (G) : d(u) = r}.

Example 1. For r ≥ 2, the complete bipartite graph K2,r is minimally 2-connected.
For each e ∈ E(K2,r), K2,r/e is 2-connected (i.e., every edge is 2-contractible) but
not minimally 2-connected. For each r ≥ 3 the cycle Cr is minimally 2-connected.

Example 2. Let H be a 2-connected graph and let G be a graph obtained by
subdivision of every edge of H with both ends of degree ≥ 3. Then G is minimally
2-connected.

We have

Theorem 2.3. For each graph H with |H| = n there exists a minimally 2-connected
graph G with |G| ≤ n2 such that H ≤ G.

Proof. Consider Kn. Replace each edge of Kn by a 4-cycle and denote the resulting
graph by G:

−→

Then
H ⊆ K̇n ⊆ G.

The graph G is 2-connected since every pair of vertices of G is contained in a cycle.
It is minimally 2-connected since each edge has an end vertex of degree 2. Clearly,

|G| = |Kn|+ 2‖Kn‖ = n+ n(n− 1) = n2.
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Note that not only H ≤ G but H is a topological minor of G. It is easy to
see that n2 is the minimum order of a minimally 2-connected universal topological
major for the family of all simple graphs of order ≤ n.

Example 3. LetH be a minimally 2-connected graph, x, y ∈ V (G) with d(x), d(y) ≥
3 and N(x) ∪N(y) ⊆ V2(H). Let P be a path with

V1(P ) = {x, y}, V2(P ) ∩ V (H) = ∅.

Then the graph G = H ∪ P is a minimally 2-connected graph.

In all three examples, if G is a minimally 2-connected graph then each edge has
an end that is of degree 2. Is this true in general? Dirac’s Theorem from 1967
provides an answer to this question.

Theorem 2.4 (Dirac, 1967). A 2-connected graph is minimally 2-connected if and
only if each edge has an end of degree 2.

Proof. Sufficiency is clear since if G is a 2-connected graph with each edge having
an end of degree 2 then for each e ∈ E(G), G − e has a vertex of degree 1 and is
not 2-connected, and hence G is minimally 2-connected.

Suppose that G is minimally 2-connected. Let e = xy ∈ E(G) with d(x), d(y) ≥
3. Since G is minimally 2-connected, G − e is connected and not 2-connected. Let
{z} be a separator of G− e such that x and y belong to two components L and R
respectively. Consider an edge ux ∈ E(G) with u 6∈ {y, z}. Since G−ux is connected
and not 2-connected, there exists a separator {w} of G − ux with components A
and B containing u and x respectively. Since d(x) ≥ 3 there is v 6∈ {u, y} such that
vx ∈ E(G). Then u, v, x ∈ L, y ∈ R, u ∈ A and v, x ∈ B. Hence v, x ∈ B ∩ L.
But then, in G, B ∩ L 6= ∅ is separated from {y} by {x}. This contradicts the
assumption that G is 2-connected.

This also provides a more constructive result on the family of minimally 2-
connected graphs.

Theorem 2.5. Let M2 denote the family of minimally 2-connected graphs. If G ∈
M2 and G 6= K3, then either there exists e = xy ∈ E(G) with d(x) = d(y) = 2
such that G/e is minimally 2-connected or there exists x ∈ V (G) with d(x) = 2,
N(x) = {y, z} and N(y)∪N(z) ⊆ V2(G) such that G− x is minimally 2-connected.
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Proof. Let G ∈M2 \ {K3}. If there exists x, y ∈ V (G) with d(x) = d(y) = 2 then
G/e is a 2-connected graph such that each edge has an end of degree 2. Hence by
Theorem 2.4, G/e is minimally 2-connected.

If there exists no pair of adjacent vertices of degree 2 in G, let x ∈ V (G) with
d(x) = 2 with N(x) = {y, z}. Then d(y), d(z) ≥ 3 and since each edge has an end
of degree 2, we have

N(y) ∪N(z) ⊆ V2(G).

Now G − x is 2-connected graph with each edge having an end of degree 2. By
Theorem 2.4, G− x is minimally 2-connected.

In [14], Mader proved among other results the following theorem.

Theorem 2.6 (Mader, 1972). Every minimally k-connected graph has at least k+ 1
vertices of degree k.

Corollary 2.2. Every minimally 2-connected graph has at least three vertices of
degree 2.

Lemma 2.1. If G 6= K2,2 is a minimally 2-connected bipartite graph then either there
exists e = xy ∈ E(G) with d(x) = d(y) = 2 and N(y) = {x, z} such that G/xyz
is a minimally 2-connected bipartite graph or there exists x ∈ V (G) with d(x) = 2,
N(x) = {y, z}, d(y), d(z) ≥ 3 and N(y) ∪ N(z) ⊆ V2(G) such that G − x is a
minimally 2-connected bipartite graph.

Proof. By Theorem 2.5, it suffices to observe that the graphs G/xyz and G− x are
both bipartite.

We now have

Theorem 2.7. Let B2 be the family of 2-connected bipartite graphs. If G ∈ B2 and
G 6= K2,2, then one of the following is true:

(1) there exists e ∈ E(G) such that G− e ∈ B2;

(2) there exists x ∈ V (G) with d(x) = 2, N(x) = {y, z}, d(y), d(z) ≥ 3 and
N(y) ∪N(z) ⊆ V2(G) such that G− x ∈ B2;

(3) e = xy ∈ E(G) with d(x) = d(y) = 2 and N(y) = {x, z} such that G/xyz
G/x1xx2 ∈ B2.

Note that each reduction in the theorem is necessary, that is, independent of
the two others. There exist inifinitely many 2-connected bipartite graphs which
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are not minmally 2-connected, for example those 2-connected bipartite graphs with
minimum degree at least 3. For each of these graphs neither the reduction in (2) nor
that in (3) may be performed, and hence the reduction in (1) is necessary. Let r ≥ 4
be even and Cr be the cycle of order r. Then Cr is a minimally 2-connected bipartite
graph. Hence the reduction of (1) and the reduction of (3) may not be performed for
Cr. The reduction in (3) may not be performed for Cr because no vertex of degree
2 in Cr has a neigbour of degree at least 3. For each graph constructed in Example
2 above, neither a reduction in (1) nor a reduction in (2) may be performed, and
hence the reduction in (3) is necessary which may be performed for each of these
graphs.

Each of the three reductions in Theorem 2.7 provides a proper minor inclusion.
Hence we have

Corollary 2.3. Let G be a 2-connected bipartite graph. If G 6= K2,2 then there
exists a 2-connected bipartite graph H such that H ≤ G and |G|−1 ≤ |H| ≤ |G|−2.

We now turn to 2-connected bipartite planar graphs. The following lemma was
established in [19] as a simple corollary to Euler’s formula for polyhedra.

Lemma 2.2. Let G be a 2-connected simple bipartite planar graph. Then δ(G) = 2
or 3. If G has no vertex of degree 2, then G has at least 8 vertices of degree 3.

For the family of 2-connected bipartite planar graphs, we have

Theorem 2.8. Let BP2 be the family of 2-connected bipartite planar graphs. If
G ∈ BP2 and G 6∈ {K2,2, K2,3} then there exists x ∈ V (Gi) with N(x) = {x1, x2}
such that H = G/x1xx2 ∈ BP2 or there exists x ∈ V (Gi) with N(x) = {x1, x2, x3}
such that H = (G− xx1)/x2xx3 ∈ BP2.

Denote by ρ1 and ρ2 respectively the reductions in (1) and (2) in the conclusion
of the theorem.

Proof. LetG be a 2-connected bipartite planar graph. Then by Lemma 2.2, δ(G) = 2
or 3. Suppose that G 6∈ {K2,2, K2,3}.

If δ(G) = 2, then let x ∈ V (G) with d(x) = 2 and let N(x) = {x1, x2}. Then
H = G/x1xx2 is a connected bipartite planar graph. (Note that this is ρ1 : G 7→
H.) It will be shown that H is 2-connected. Let f : G → H be the contraction
determined by the operation, with f({x, x1, x2}) = x′. Then

V (H) = (V (G)− {x, x1, x2}) ∪ {x′},
E(H) = (E(G)− {xx1, xx2}) ∪ [x′, N(x1) ∪N(x2)− {x, x1, x2}] .
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Let u, v ∈ V (H). If x′ 6∈ {u, v} then let P and Q be two internally disjoint (u, v)-
paths in G. If x 6∈ V (P )∪V (Q) then P and Q are two internally disjoint paths of H
connecting u and v. If x ∈ V (P )∪ V (Q) then since P and Q are internally disjoint,
it may be assumed that x ∈ V (P ) and x 6∈ V (Q). Suppose that z1x1xx2z2 ⊂ P .
Then P ′ = (P −{x, x1, x2})∪{z1x

′z2} and Q are two internally disjoint (u, v)-paths
in H. If x′ ∈ {u, v} then let u = x′. Sincce G is 2-connected there are two disjoint
(x, v)-paths P and Q in G. Now x is a common end of the two paths P and Q.
Assume that z1x1x ⊆ P and z2x2x ⊆ Q. Then

P ′ = (P − {x, x1}) ∪ {x′z1}, Q′ = (Q− {x, x2}) ∪ {x′z2}

are two internally disjoint (x′, v)-paths in H. Hence we have shown that H is 2-
connected.

Assume, therefore, that δ(G) = 3 and let x ∈ V (G) with N(x) = {x1, x2, x3}.
Let H = (G− xx1)/x2xx3. (Note that this is ρ2 : G 7→ H.) Then H is a connected
planar graph. It will be shown that H is bipartite and 2-connected.

Let f : G − xx1 → H be the contraction determined by operation ρ2, with
x′ = f({x, x2, x3}). Let X and Y be the parts in the bipartition of G with x2, x3 ∈ X
and hence x ∈ Y . Then (X − {x2, x3}) ∪ {x′} and Y − x are parts in a bipartition
of H. This is because

V (H) = (V (G)− {x, x2, x3}) ∪ {x′},
E(H) = (E(G)− {xxj : j = 1, 2, 3}) ∪ [x′, N(x2) ∪N(x3)− {x}].

Hence H is bipartite.

Assume that H is not 2-connected. Since H is connected, let {z} be a separator
of H. If z 6= x′ then {z} would be a separator of G, a contradiction.

Assume therefore that z = x′. Let L be a component of H− z containing x1 and
let R = H − x′ − L. Now since d(x1) ≥ 3, dH(x1) ≥ 2 and {x1} is a separator of G.
This is a contradiction. Hence we have shown that H is 2-connected.

The proof is complete.

That the first reduction is necessary is seen from circuits of even length. These
are 2-connected simple bipartite planar graphs regular of degree 2. That the second
reduction is necessary may be seen from the existence of connected (and hence
2-connected) cubic bipartite planar graphs.

Corollary 2.4. If G is a simple connected bipartite planar graph and |G| > 5
then there exists a simple connected bipartite planar graph H such that H ≤ G and
|H| = |G| − 2.
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Note that K2,2 ⊂ K2,3 and hence K2,2 < K2,3. Thus if G is a 2-connected
bipartite planar graph then K2,2 ≤ G.

A homomorphism f : G → H is a mapping f : V (G) → V (H) such that
xy ∈ E(G)⇒ f(x)f(y) ∈ E(H). An r-fold covering is a homomorphism f : G→ H
such that for each e ∈ E(H), |f−1(e)| = r. Note that f−1(e) ⊆ E(G).

If G is a 2-connected bipartite planar graph then is there a homomorphism
f : G → K2,2? Note that G is a bipartite graph iff there exists a homomorphism
f : G → K2. Note also that there is a homomorphism f : Q3 → K2,2 as a 3-fold
covering, and there is a homomorphism g : H → K2,2 where H is the Herschel’s
graph.
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