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Abstract

In this paper we consider left cyclic modules over a skew polynomial ring R, which are not
injective as a left R-module and give on example of skew polynomial rings which homo-
morphic image is isomorphic to a matrix ring. We hope that this correspondence is useful.

1 Introduction

Let k be a field and o be an automorphism of k. We define R = k[z;0] =
{f(@)|f(x) = apa™ + ap_12" ' +--- + ag, a; € k,n € N} ;| a skew polynomial
ring with a usual polynomial addition, and multiplication is defined by the following
rule

ra = o(a)z.

First we consider that R is a principal left ideal domain. We show that R has a left
division algorithm. Let

1

f(@) = apa™ + an_12"" +--- +ag

and
g(x) = bz + bm—lxm_1 +---+bo

be polynomials of R. We assume that n > m. Since ¢ is an automorphism of k& we
choose the element ¢y = 0~ (a,b;,!) in k then

g(2)coz™ ™™ = (bypx™ + b1 2™+ - 4 b)o ™ (anb "™ = apa + ...

and if we take fi(z) = f(x) — g(x)cox™ ™™ then deg fi(z) < deg f(x). If we con-
tinue this procedure until deg fx(z) < degg(x) then we can get r(z) = fr(x) with
degr(x) < degg(z) and f(z) = g(x)q(x) + r(z). Therefore we conclude that R is a
ring with a left division algorithm. So R is a left principal ideal domain (i.e. every
left ideal is generated by its non zero polynomial of a minimum degree). We use
that a left module M over a left princinal ideal domain R is iniective if and onlv if
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2 Cyclic modules

We define k as a left R-module with the following multiplication.
f@)a = a,0™(Q) + an_10"" Ha) + - - - + apa,

where a € k and f(z) = apz™ + -+ + ap € R. Since k is a field, k can be generated
by any nonzero element of k i.e. Ra =k, a € k, so we call k as a cyclic module over
R. First we show that k is isomorphic to R/R(z — 1) as a left R-module.

Vi(z) = anz” 4+ ap12" '+ +ag € R
fil@) = f(2) —anz™ Nz — 1) = (an + an_1)2" " + apox™ % + -+ a1z + ag
If we continue this process, after nth step, we have
fulz) =an +apn—1+ -+ aop.
This means that
f(x)=an+an—1+---+ag(modR(z — 1)).
If we define a module homomorphism ¢ as
¢: R/R(x —1) — k,

f(@) — an + a1+ + ag,
then ¢ is an R- module isomorphism and we show it.
First we see the case when g(z) = bx™.
9(@) [ (2) = b™(ana™ + an_12™ " + -+ ag) =
= bo™ ()" 4 bo™ (1) 2" T £ bo™ (ag) ™
bx™ f(x) = bo™(an) + bo™ (an—1) + - + bo™ (ag)(modR(x — 1))

On the other hand if we see a module multiplication in k, then we have

bx"p(f(x)) = bx™(an + an—1+ -+ ag) = bo"™(an) + bo" (an—1) + -+ + b (ap)

Thus conclude that

p(ba™ f(x)) = p(bx™ f(x)) = ba™ o (f (2)).

In general case, if we take g(x) = b,z + - - - + by, then by the additive property of
 and above the case, we have



And we prove that k is isomorphic to R/R(z — 1) as a left R-module.

Now we are interested in the case k is a simple algebraic extension field of F
where F' = inv(o) = {« € klo(a) = a}. In this case k = F(«) for some algebraic
element « of k over F. Since o is an element of Gal(k/F), o has a finite order i.e.
o™ = id for some natural number n. If we take

fa)=a" 1.
then for any 3 in k we have
f@)p=@a"-1)p=0c"(B)-B=8-8=0.

This means a left R-module k is not divisible. And we can conclude that & is not a
left injective R-module.

By theorem in [1] we have some examples of left R-modules which are not injec-
tive.

Theorem 1. Let k be a field and o be an automorphism of k with F = inv(c) =
{a € klo(a) = a}. Let k be a finite algebraic extension of F. Then the following
modules are not injective.

(1) A left R-module k;
(2) A left R-module R/R(x — o), where a € k with a = % for some (B € k.
Proof. (1) (1) is proved above.

(2) We show that for any « of k with o = % for some 8 € k, R/R(x — «)

is isomorphic to R/R(x — 1) as a left R-module. Let ¢ be an R-module
isomorphism such that

¢:R/R(x—1) — R/R(z — «)

and we set (1( mod R(x — 1)) = B( mod R(x — «)) for some non-zero 3
then by R-module homomorphism

p(f(x) (modR(z — 1)) = f(x)p(1 (modR(z — 1)) = f(x)B(modR(x — a))
Since x — 1 = 0(modR(z — 1)) and by well defined condition of ¢ we have
o(x—1)= (2 —1)p(l (modR(x — 1)) = (x — 1)B(modR(z — a)).

Then
(x —1)8 =0(modR(z — «))

o(B) — =z —a) = a=
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We conclude the following corollary from the above theorem.

Corollary 1. Let k be a finite field of characteristic 2 and o be the Frobenius auto
morphism of k over GF(2). Then all left R-modules R/R(x — «) are isomorphic for
any non-zero o in k.

Proof. Since o(a) = o? and % = 2% = o~ ! then for any non-zero « in k
«
ooty

Therefore by(2) of Theorem 1, a left R-module R/ R(x—«) is isomorphic to R/R(z—
1) for any non-zero « in k.
L

3 A skew polynomial ring over a finite field

Now we see some particular cases of a skew polynomial ring. Let k be a finite field
i.e. k= GF(p") and o be a Frobenius map of k over GF(p). i.e.

oc:k—k
Va ek, a— o

It is well known that ¢ = ¢d and n is the minimum number with such property.
And it implies that the annihilator of a left R-module k is R(z™ — 1) which is an
ideal in R. We take a ring S = R/R(2" — 1) and y = T then y™ = 1 and every
element s in S has a unique canonic form s = ag + a1y + -+ + ap_1y™ L. So the
number of elements of S is p"z.

Therefore k is a left faithful irreducible S-module then S is a primitive ring. It
is well known that S is a direct sum of simple artinian rings i.e. matrix rings over
a field. The following proposition tells us that S has no nonzero proper ideal.

Proposition 1. S is a simple ring.

Proof. We assume that [ is a nonzero ideal of S. Let s be a nonzero element of I and
s =y "+ Br_1y" ' +- -+ By with minimum degree r. And we assume that n > r > 0.
Let 8,—; be the first nonzero coefficient from left i.e. 8,1 =--- = ;41 = 0 but
Br—i # 0. Since 0 € Gal(GF(p™)/GF(p)) and has the order of n, there is an element
a € k such that 0" (a) # 0" (). If we take s’ = 0" (a)s — sa, then

s'= (0" (a)y" + 0" ()B4 ... ) = (0" (@)Y + 0" )BT ) =

(0"(a) — 0" () Briy" "+ £0€
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s’ is a nonzero element in I with degree less than of s. It contradicts to our choice.
This means I contains an element of degree zero i.e. I = S. Thus we prove S has
no nonzero proper ideal. ]

At last we conclude the above consideration in the following theorem.
Theorem 2. Let k = GF(p") be a finite field and o be the Frobenius map of k.
oc:k—k
ar— aP.
Let R = k[z;0] be a skew polynomial ring and S = R/(z"™ — 1)R be a factor ring.
Then S is a simple artinian ring i.e. S is isomorphic to My, (GF(p)).
From this theorem, we can conclude the following property of a full matrix ring.

Proposition 2. The full matriz ring over GF (p) can be generated by two elements.

We consider the following example.

GF(4) = {0,1,a,a + 1|a® + a+ 1 = 0}. 0 € Gal(GF(4)/GF(2)) and o(a) =
a? =a+1. R= GF(4)[r;0] is a skew polynomial ring with a multiplication that
r-l=2, z-a=(a+1)randz-(a+1)=az. Let S = R/R(2% — 1) be a factor
ring and y = 7. Then y?> = 1 and S = {By + B1y|Bo, /1 € GF(4),4*> = 1}. The
number of elements of S is 16. By the above theorem it implies that S is isomorphic
to Ma(GF(2)). Let f be an isomorphism from S to My(GF(2)). Since S is generated
by {a,y}, it is enough to define homomorphic image of « and y.

f:8 — My(GF(2))

@ 10) Y 10 )"

In this case we see k as a left S-module with multiplication ya = o(a) = a + 1.
Acknowledgements. I would like to thank Prof. A.Mekei for his great advice
on this paper.

References

[1] B. L. Osofsky , Injective module over twisted polynomial rings. Nagoya Math.
J. Vol. 119 (1990) 107-114

[2] Nathan Jacobson, Lectures in Abstract Algebra, IT, III.

[3] I.N.Herstein, Noncommutative rings

65



